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An examination is made of the problem of temperature distribution in
a two-layer plate heated by a constant-power surface source.

Surface heating of multilayer plates is widely used
in various branches of technology. In the present note
we examine the problem of the temperature field in a
two-layer plate heated by a constant source of strength
gg. The problem is stated as follows: it is required to
find the solution of the equations
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ty(z, T) being bounded as z — «,

The solution of the system (1)—(6) is found with
the aid of a Laplace transformation with respect to
7. We designate
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Applying the transformation (7) to (1), (2) and boundary
conditions (3)—(5), solving the differential equations
obtained, and using the boundary conditions, we ob-
tain
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The inverse transforms of (8) and (9) may be found
with the help of the expansion theorem, or by use of a
table of inverse transforms [1], after reducing the de-
nominators of (8) and (9) to the form
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Then for g > 0 we obtain
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Using the table of inverse transforms [1}], we obtain
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In the case g < 0 the multiplier (—1)2~1 must be
included under the summation sign in (13), and |gl
must be taken. The expression for ty(z, T) is found
similarly in the case g > 0:
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with the remark made for g < 0 taken into account.
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